СТАТУС ЦКП КАМИКС

1. Копия документа, регламентирующего порядок доступа к ЦКП

№ п/п	Наименование документа	Файл документа
1	"Порядок оказания услуг ЦКП КАМИКС"	Положение о порядке оказания услуг ЦКП КАМИКС.pdf
	Приложение № 3 к Положению о ЦКП КАМИКС	
2	"Регламент оказания услуг ЦКП КАМИКС" Приложение № 4 к Положению о ЦКП КАМИКС	Положение о регламенте оказания услуг ЦКП КАМИКС.pdf

2. Степень уникальности УНУ

N⁰	Наименование	
п/п	показателя	
1	Уникальные характеристики/возмо жности УНУ в сравнении с зарубежными и российскими аналогами (указываются аналоги и их сравнение с заявляемой УНУ), ожидаемый период сохранения уникальности/превосхо дства	В состав КАМИКС входит комплекс современного аналитического оборудования. Атомно-зондовый томограф ECOTAP (САМЕСА) позволяет получать данные о наноструктурном состоянии проводящих материалов (металлов, сплавов на основе Fe, Ti, V, и т.д., различных модельных сплавов, микропроводов и т.п.) с атомарным разрешением и определением химической природы каждого испаренного атома. Суть данного метода заключается в последовательном испарении атомов с поверхности образца под воздействием электрического поля и последующим детектированием испаренных ионов. Томографическая атомно-зондовая микроскопия дополняет другие существующие методы микроскопического анализа и позволяет получать более широкую информацию об особенностях современных наноструктурированных материалов. Данная методика позволяет получать различную информацию (размер, состав, распределение химических элементов, плотность числа) о сложных наноразмерных (1-4 нм) объектах, внедренных в материал при приготовлении или образующихся при их эксплуатации. Разработанный и успешно эксплуатируемый Прототип атомного зонда с лазерным испарением ПАЗЛ-3D (ИТЭФ) оснащен современным детектором на основе линий задержки, который позволил увеличить скорость сбора данных (до 1000 атомов/сек) и область исследований (до 100 × 1000 нм) в 25 раз по сравнению с атомным зондом ECOTAP. А использование в качестве испаряющей системы фемтосекундного лазера значительно расширяет возможный

спектр исследуемых материалов (металлы, полупроводник, диэлектрики и т.д.). ПАЗЛ-3D является единственной установкой такого типа в России. Сканирующий зондовый микроскоп MULTIMODE NANOSCOPE III (VEECO). используя различные измерительные компоненты, позволяет проводить исследования топографии поверхности, шероховатости, распределения частиц по размерам и высоте и т. д. Имеются возможности проведения комплексных исследований различных образцов на площади от 1 нм × 1 нм до 150 мкм \times 150 мкм, с разрешением до 1 нм для ACM, вплоть до атомного разрешения для СТМ. Микроскоп СММ-2000 - мультирежимный, он имеет и оба базовых режима - СТМ и АСМ, и более 20 дополнительных режимов исследования физических свойств образцов. Микроскоп позволяет достигать чрезвычайно высокого разрешения до 0.1 Ангстрем. Профилометр модели 130 предназначен для измерения 28 параметров шероховатости наружных и внутренних поверхностей и 4 параметров волнистости (пазы, отверстия) поверхностей, сечения которых в плоскости измерения представляют собой как прямые, так и изогнутые по радиусу линии (шарики, валы и т.д.), с измерением этого Чувствительность индуктивного радиуса. датчика профилометра модели 130 имеет рекордную величину в 0.002 мкм, что позволяет описывать рельеф неровностей высотой от 0.005 мкм. Профилометр прошёл во ВНИИМС процедуру Гос. испытаний и зарегистрирован как средство измерения РФ 1-й степени точности. Позитронная аннигиляционная микроскопия (ПАС) является неразрушающим методом изучения структуры вещества, использующего позитрон в качестве зонда следующих свойств окружающей его среды: электронную структуру вещества (топологию поверхности Ферми); образование и эволюцию нанодефектов (главным образом вакансионного типа; чувствительность ПАС таким дефектам оказывается на уровне 10^{15} см⁻³); образование нанокластеров под действием облучения; распределение (пористость): свободного объема физико-химические ПАС процессы радиолиза среды. Суть состоит В имплантации В исследуемый образец позитронов И последующей регистрации характеристик их аннигиляционного гамма-излучения. Также в состав УНУ входят вспомогательные установки и приборы для пробоподготовки и осуществления

установки и приборы для пробоподготовки и осуществления контроля образцов. Просвечивающий электронный микроскоп JEM JEOL 1200 EX с термоэлектронным источником электронов (LaB₆). Максимальное ускоряющее напряжение 120 кэВ. Основные направления использования установки: исследование микроструктуры и морфологии конструкционных материалов, контроль качества образцов для атомно-зондовой томографии. TenuPol-5 – автоматическая установка электролитического утонения

образцов для электронной микроскопии со встроенной
функцией сканирования параметров процесса и
возможностью установки дополнительных параметров для
новых материалов. Шлифовально-полировальный станок с
регулируемой скоростью вращения LaboPol-5. Основные
направления использования установки: механическое
утонение ПЭМ образцов; подготовка поверхности ПЭМ
образцов к облучению тяжелыми ионами на ускорителе;
подготовка образцов к проведению различных исследований
морфологии поверхности и механических свойств
(наноиндентирование, сканирующая туннельная и
атомно-силовое исследование и др.). Электроэрозионный
станок ВЭСТ-240-3 с ЧПУ ДГТ 735 предназначенный для
автоматического изготовления деталей сложной формы из
электропроводных материалов с вертикальной
(цилиндрической) образующей. Процесс электроэрозионной
обработки объектов исследования является одной из самых
успешных методик, т.к. нарезание образцов происходит в
воде при помощи плазменного распыления вещества,
следовательно - бесконтактно, прецизионно, фактически без
нагрева образца, с минимальным наведением дефектов.
В России аналога КАМИКС нет, наличие установки ПАЗЛ-3D
(единственной в России с лазерным испарением) обеспечивает
долгосрочную уникальность.
Уникальные возможности ЦКП будут существенно расширены
в результате проводимой в настоящее время модернизации
установок атомно-зондовои томографии ПАЗЛ-ЗД и ЕСОТАР и
другого технологического и диагностического осорудования.
основной целью модернизации является расширение тематики
проводимых исследовании, увеличение эффективности работы
установок атомно-зондовой томографии, а также повышение
массе поле зрения пространственное разрешение В случае
успешного осуществления молернизации спелует ожилать
сохранения уникальности на период в десять лет.

2	Решаемые с	Томографические атомно-зондовые исследования,
	использованием УНУ	выполненные на КАМИКС, позволили получить данные о
	масштабные научные	наноструктурном состоянии широкого спектра проводящих
	задачи	материалов (металлов, сплавов на основе Fe, Ti, V, и т.д.,
		различных модельных сплавов, микропроводов и т.п.) с
		атомарным разрешением. Широкое применение
		атомно-зондовая томография нашла при анализе
		наноструктурированных сталей (лисперсионно-твердеющих
		и лисперсно-упрочненных оксилами). макроскопические
		свойства которых определяются развитой наноструктурой
		Томографическая атомно-зонловая микроскопия лополняет
		лругие существующие метолы микроскопического анализа и
		позволяет получать более широкую информацию об
		особенностях современных наноструктурированных
		материалов Применение атомно-зондового томографа с
		пазерным испарением позволило исспедовать материалы на
		поверхности которых формируются прочные оксилные
		пленки (например алюминий и титан) Атомно-зондовая
		томография позволяет получать различную информацию
		(размер состав распределение химических элементов
		плотность числа) о сложных наноразмерных (1-4 нм)
		объектах, внелренных в материал при приготовлении или
		образующихся при их эксплуатации. Применение этой
		метолики востребовано в областях гле большое внимание
		улеляется процессам возникновения наноструктурных
		особенностей и влиянию полобных образований на свойства
		материала. Такими направлениями являются, ялерная
		энергетика, авиашионная и автомобильная промышленность.
		космическая промышленность, микроэлектроника и т.д.
		Комбинация атомно-зондовой томографии с
		облучением тяжелыми ионами позволяет проводить
		экспресс-анализ новых перспективных конструкционных
		материалов, которые планируется применять в новых
		ядерных и термоядерных энергетических установках. в
		космической технике, при создании новых научных и
		промышленных установок, подверженных радиационным
		воздействиям.
		В случае использования ионных пучков для
		легирования, модификации приповерхностных слоев и
		создания наноструктурированных областей в материалах на
		глубинах от сотен нанометров до нескольких микрон.
		становится актуальным возможность количественного
		анализа образованных наноразмерных особенностей.
		Наличие в составе УНУ современных аналитических
		приборов позволяет дополнительно исследовать:
		топографию поверхности, шероховатости, распределения
		частиц по размерам и высоте и т. д.; электронную структуру
		вещества (топологию поверхности Ферми); образование и
		эволюцию нанодефектов; образование нанокластеров под
		действием облучения; распределение свободного объема

(пористость); физико-химические процессы радиолиза
среды; микроструктурный и дифракционный анализ пленок
проводящего не магнитного не органического материала
толщиной не более 100 нм и т.д.
Основные направления использования УНУ:
• Исследования тонкой структуры материалов, в
том числе гетерогенных и
наноструктурированных (перспективные стали и
сплавы, дисперсионно твердеющие и
дисперсно-упрочненные оксидами стали, сплавы
на основе V, Ті, модельные бинарные сплавы
типа Fe-Cr, микропровода, оксидные пленки на
поверхности металлов и т.д.);
• Анализ радиационной стойкости перспективных
реакторных и термоядерных конструкционных
материалов с применением облучения пучками
тяжелых ионов и послелующего
атомно-масштабного анализа перестройки
структурно-фазового состояния облученных
материалов:
• Исспедования модельных сплавов в условиях
возлействия термических и ралиационных
полей.
• Исследования наноструктурных изменений
материалов при молификации
приповерхностных споев и созлания
наноструктурированных областей с
использованием ионных пучков
• Определение наличия лефектов вакансионного
типа (вакансий ливакансий вакансионных
inita (bakanonin, Anbakanonin, bakanononinibik
комплексов и т.л.) в кристаллических материалах
комплексов и т.д.) в кристаллических материалах, либо своболного объема в молекулярных срелах
комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах);
комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); • Определение констант скорости химических
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней сталии процесса радиолиза среды:
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.;
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.;
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.;
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.; Исследования на КАМИКС в значительной степени направлены на получение новых знаний и разработку экспериментальных
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.; Исследования на КАМИКС в значительной степени направлены на получение новых знаний и разработку экспериментальных методик в области анализа перспективных материалов, в том
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.; Исследования на КАМИКС в значительной степени направлены на получение новых знаний и разработку экспериментальных методик в области анализа перспективных материалов, в том числе для разрабатываемых ядерных и термоядерных
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.; Исследования на КАМИКС в значительной степени направлены на получение новых знаний и разработку экспериментальных методик в области анализа перспективных материалов, в том числе для разрабатываемых ядерных и термоядерных реакторов. Комплекс позволяет проводить комплексные
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.; Исследования на КАМИКС в значительной степени направлены на получение новых знаний и разработку экспериментальных методик в области анализа перспективных материалов, в том числе для разрабатываемых ядерных и термоядерных реакторов. Комплекс позволяет проводить комплексные междисциплинарные исследования для решения задач
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.; Исследования на КАМИКС в значительной степени направлены на получение новых знаний и разработку экспериментальных методик в области анализа перспективных материалов, в том числе для разрабатываемых ядерных и термоядерных реакторов. Комплекс позволяет проводить комплексные междисциплинарные исследования для решения задач материаловедения (в том числе радиационного),
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.; Исследования на КАМИКС в значительной степени направлены на получение новых знаний и разработку экспериментальных методик в области анализа перспективных материалов, в том числе для разрабатываемых ядерных и термоядерных реакторов. Комплекс позволяет проводить комплексные междисциплинарные исследования для решения задач материаловедения (в том числе радиационного), радиобиологии, наноэлектроники и др
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.; Исследования на КАМИКС в значительной степени направлены на получение новых знаний и разработку экспериментальных методик в области анализа перспективных материалов, в том числе для разрабатываемых ядерных и термоядерных реакторов. Комплекс позволяет проводить комплексные междисциплинарные исследования для решения задач материаловедения (в том числе радиационного), радиобиологии, наноэлектроники и др
 комплексов и т.д.) в кристаллических материалах, либо свободного объема в молекулярных средах (например, в полимерах); Определение констант скорости химических реакций первичных радиолитических продуктов на ранней стадии процесса радиолиза среды; Изучение морфологии поверхностей, объектов на подложках, например, наночастиц, биологических объектов и др.; Исследования на КАМИКС в значительной степени направлены на получение новых знаний и разработку экспериментальных методик в области анализа перспективных материалов, в том числе для разрабатываемых ядерных и термоядерных реакторов. Комплекс позволяет проводить комплексные междисциплинарные исследования для решения задач материаловедения (в том числе радиационного), радиобиологии, наноэлектроники и др

	эксплуатационных свойств материалов, поиска и разработки радиационно-стойких материалов нового поколения. Эти
	исследования соответствуют направлениям развития
	критических технологий: технологии атомной энергетики,
	ядерного топливного цикла; Нанотехнологии и наноматериалы.
	В течение последних пяти лет в ЦКП КАМИКС были
	выполнены следующие работы:
	1. Министерство образования и науки РФ.
	ГОСУДАРСТВЕННЫИ КОНТРАКТ № 14.740.11.0812, 2010-
	2012. Новые технологические решения для энергетики и
	медицины на базе ионных пучков.
	2. АО ВПИИНИИ, ДОГОВОР \mathbb{N}° 320-7, 2015, ИССЛЕДОВАНИЕ
	элементного состава, микроструктуры и структурно-фазовых
	материалов метолами томографической атомно-зонловой
	микроскопии" в рамках Госуларственного контракта №
	Н.4х.44.90.13.1082 с Госкорпорацией Росатом.
	3. ОАО ВНИИНМ, Договор № 0708-П2, 2014, "Исследование
	элементного состава, микроструктуры и структурно-фазовых
	состояний наноструктурированных конструкционных
	материалов методами томографической атомно-зондовой
	микроскопии" в рамках Государственного контракта №
	Н.4х.44.90.13.1082 с Госкорпорацией Росатом.
	4. ОАО ВНИИНМ, Договор № 208-031/320-15, 2013,
	«Исследование элементного состава, микроструктуры и
	структурно-фазовых состоянии наноструктурированных
	ЭК-181 ЧС-139 и ЭП-450 ЛУО) методами томографической
	атомно-зонловой микроскопии в необлученном состоянии
	после разных ТМО» в рамках Государственного контракта №
	Н.4х.44.90.13.1082 с Госкорпорацией Росатом.
	5. ОАО ВНИИНМ, Договор № 208-031/320-14, 2012,
	"Исследования методом томографической атомно-зондовой
	микроскопии перспективных наноструктурированных
	конструкционных материалов" в рамках Государственного
	контракта № Н.4х.45.90.12.1089 с Госкорпорацией Росатом.
	6. ФГУП «ГНЦ РФ ТРИНИТИ», Договор № 25/13Р,
	2013-2015 «Упрочнение конструкционных материалов при
	воздеиствии на их поверхность импульсных ионных пучков.
	Этап 2013-2015 годов» в рамках государственного контракта N_0 II 4 $_{\rm V}$ 44 00 12 1000 о Босковчерочной Восстан
	M° П.4х.44.90.15.1090 с Госкорнорациен госатом. 7 Грант сормастного конкурса РФФИ обталицание им
	Гельмгольца 2013-2015 13-02-91326-СИГ а HRIRG -111
	"Tailoring nanoscaled features in novel steels for high-
	temperature applications using ion beam modification"
	совместно с Институтом технологий Карлеруз (Германия)
	8. ЦНИИ КМ ПРОМЕТЕЙ, Договор №300-2014, 2014-2016.
	"Проведение исследований нано-структуры
	экспериментальных образцов из титановых сплавов"

	9. ЦНИИ КМ ПРОМЕТЕЙ, Договор №631-2016, 2016-2017. "
	Предварительный анализ локального химического состава
	методом атомно-зондовой томографии"
	Проводятся работы в рамках соглашений с:
	1. НИЯУ МИФИ от 22.04.2015
	2. Институтом металлургии и материаловедения им.
	А.А. Байкова РАН от 19.02.2016
	3. НИЦ «Курчатовский институт» и ФГУП ВНИИА им.
	Н.Л. Духова от 16.12.2017
	4. Химическим факультетом МГУ им. М.В. Ломоносова
	от 14.12.2016
	D HOOTOGINOO DDONG DI HOOTUGIOTOGI
	В настоящее время выполняются. 1. ПНИИ КМ ПРОМЕТЕЙ Поговор №614 2016, 2016, 2017
	1. ЦПИИ КМ ПГОМЕТЕИ, ДОГОВОР №014-2010, 2010-2017. "Исследование докаль ного химинеского состава лисперсиних
	фаз в высокопрочных сталях метолом атомно-зонловой
	томографии "
	2. Грант РНФ (СОГЛАШЕНИЕ № 17-19-01696)
	«Исследование наномасштабных процессов радиационного
	упрочнения ферритно-мартенситных сталей под
	воздействием облучения»
	3. МАГАТЭ, Исследовательский контракт No: 20754,
	2017-2018 "Atom Probe Tomography Study of
	Ferritic-Martensitic Steels Reconstruction under Heavy Ion
	Irradiation"
	На установках ЦКП КАМИКС проводятся исследования в
	рамках 1 осзадания ИТЭФ:
	1. "Аттестация новых сталеи для атомных реакторов с
	повышенным ресурсом и мощностью по направлению № 4
	«Газвитис ядерных технологии для создания атомной эцерсетики цорого поколеция»
	2 "Приклалные исследования с использованием тяжелых
	ионов Развитие ралиационных технологий на базе пучков
	тяжелых ионов" по направлению № 7 «Фунламентальные и
	прикладные исследования с использованием тяжелых ионов.
	Теоретическая и математическая физика»
	1

3	Полученные за	Широкое применение методы атомно-зондовой
	последние 5 лет с	томографии (АЗТ) и просвечивающей электронной
	использованием УНУ	микроскопии (ПЭМ) нашли при анализе
	значимые научные	наноструктурированных сталей, макроскопические свойства
	результаты	которых определяются развитой наноструктурой. Проведены
	(приводится краткое	исследования наномасштабного состояния ряда
	описание полученных	дисперсно-упрочненных оксидами ферритно-мартенситных
	результатов)	сталей ODS Eurofer, ДУО ЭК-181, ДУО ЭП-450. Получена
		детальная информация о наноструктуре ДУО сталей с
		различным содержанием хрома, легированных ванадием и
		титаном [1-3]. Обнаружена высокая плотность (~ 5×10 ²³ м ⁻³)
		наноразмерных (2-4 нм) кластеров в исходном состоянии
		дисперсно-упрочненной оксидами Y ₂ O ₃ стали ODS Eurofer.
		Впервые исследован состав этих кластеров и показано, что
		они состоят из атомов иттрия, кислорода, ванадия и азота.
		Проведено детальное исследование нанооструктуры ДУО
		сталей ODS 13.5Cr с различным содержанием титана: ПЭМ
		анализ оксидных включений и АЗТ анализ нанокластеров,
		содержащихся в этих материалах).
		Проведены исследования ферритно-мартенситных
		сталей Eurofer 97 и ODS Eurofer, облученных в реакторе
		БОР-60 [1, 4]. Впервые изучено изменение наноструктуры
		стали ODS Eurofer при реакторном облучении до дозы 32 сна
		при 330 °C и показано, что после облучения в стали ODS
		Eurofer имеются кластеры, существенно отличающиеся по
		составу от кластеров в исходном состоянии, в то время как
		размер и плотность близки к соответствующим значениям в
		исходном состоянии. Обнаруженное изменение состава
		твердого раствора указывает на частичное растворение
		включений оксидов иттрия, упрочняющих материал.
		Показано, что реакторное облучение при 330 °С до
		повреждающей дозы 32 сна ферритно-мартенситной стали
		Eurofer 97 приводит к распаду твердого раствора и
		формированию предвыделений а' фазы, обогащенной не
		только Cr, но и Mn, S1. Обнаружена сильная
		пространственная корреляция в расположении атомов Сг и
		Mn, указывающая на важную роль марганца в распаде
		твердого раствора под оолучением. Показано, что
		оонаруженные предвыделения вносят значительный вклад в
		радиационное упрочнение этого материала.
		Проведены исследования корпусных сталеи реакторов
		ВВЭР-440 поле реакторного облучения при 270 °C,
		восстановительного отжига при 4/5 °С и повторного
		реакторного облучения [5, 6, 7]. Методами томографической
		атомно-зондовой микроскопии получены данные о
		наноразмерных предвыделениях, ооразующихся в материале
		сварного шва корпуса реактора ВВЭР-440 при реакторном
		облучении с повышенной плотностью потока неитронов в
		условиях первичной эксплуатации и эксплуатации после
		восстановительного отжига, исследован состав радиационно-

индуцированных нанокластеров и распределение меди и фосфора в кластерах, получены детальные данные о составе дискообразных карбидов. Впервые выявлены закономерности влияния плотности потока нейтронов на состав и количество кластеров, формирующихся при первичном облучении материала сварного шва корпуса ВВЭР-440 и после восстановительного отжига. В условиях быстрого набора 10 раз превышающего дозы. в эксплуатационные условия, установлено: - формирующиеся при первичном облучении кластеры имеют в два раза меньшее значение концентрации обогащающих элементов, чем в материале темплетов, вырезанных из корпуса реактора; - при облучении материала после восстановительного отжига формируется новая генерация меднообогщенных кластеров, в то время как в темплетах они не были обнаружены.

Проведены исследования по отработке имитационных экспериментов по облучению тяжелыми ионами образцов для атомно-зондовой томографии [8] и образцов для просвечивающей электронной микроскопии [9-10] на ускорителе ионов ТИПр-1 (ИТЭФ) и его вакуумно-дуговом источнике ионов.

Проведены атомно-зондовые исследования образцов ферритно-мартенситных сталей Eurofer 97, ODS Eurofer, ЭК-181, облученных тяжелыми ионами при комнатной температуре [11-15]. При облучении образцов стали ODS Eurofer тяжелыми ионами выявлены две составляющие процесса деградации наноструктуры дисперсно-упрочненной оксидами стали: выход ванадия и азота из состава кластеров под воздействием каскадообразующего облучения и приход иттрия и кислорода из твердого раствора в кластеры. Впервые показано, что в процессе облучения стали ЭК-181 ионами железа до повреждающей дозы 10 сна происходит перераспределение элементов и изменение состава, размеров Cr-V-N кластеров, количества наноразмерных И упрочняющих материал после традиционной термической обработки, причем увеличение размера кластеров под воздействием каскадообразующего облучения сопровождается снижением в них концентрации ванадия, хрома и азота.

Методами АЗТ изучен распад твердого раствора сплава Fe-22%Cr при термическом старении при 500 °C и последующем облучении ионами железа при комнатной температуре [16-18]. Проанализирована атомно-масштабная кинетика формирования предвыделений а' фазы при термическом старении и влияние на обнаруженные предвыделения низкотемпературного каскадообразующего облучения.

Проведены исследования методами ПЭМ и АЗТ образцов облученных тяжелыми ионами: ДУО сталей ODS Eurofer, ODS 13.5Cr и ODS 13.5Cr 0.3Ti при комнатной

температуре и 300 °С до дозы 3 сна [19]. Показано, что каскадообразующее облучение при низких температурах приводит к растворению крупных оксидов и росту наноразмерных предвыделений и кластеров).

Исследована перестройка структурно-фазового состояния титанового сплава Ti-5Al-4V-2Zr - перспективного материала корпусов транспортируемых водо-водяных энергетических реакторов - с одновременным применением методик ПЭМ и A3T для облученных ионами титана образцов при температуре 260 °C до дозы 1 сна [20, 21]. Показано, что каскадообразующее облучение в этом случае приводит к образованию высокой плотности обогащенных ванадием наноразмерных предвыделений в альфа-фазе сплава.

Позитронная аннигиляционная спектроскопия как метод исследования конденсированных сред, а также быстропротекающих внутритрековых процессов радиолиза. К наиболее важным результатам, полученных с помощью аннигиляции позитронов, можно отнести следующее:

1) выявление дефектной структуры образцов сварного шва корпуса реактора ВВЭР в зависимости от флюенса облучения реакторными нейтронами, а также содержания фосфора в материале сварного шва. Проведена оценка концентрации накопленных радиационных вакансий, изучен их температурный отжиг [6, 7];

2) изучены радиолитические процессы в треках быстрых позитронов и электронов в конденсированных молекулярных средах. Результатом этих работ явилось создание единой модели ранних радиолитических, процессов в треках позитронов и электронов в конденсированных молекулярных средах. В настоящее время эта модель является теоретической основой применения позитронной спектроскопии к молекулярным средам [22];

3) показана принципиальная возможность быстрого канцерогенность. тестирования веществ на Способ базируется на измерении вероятности образования атома позитрония, по которой можно судить 0 степени канцерогенной опасности исследуемых химических соединений. Способ позволяет радикально ускорить и удешевить процедуру выявления канцерогенных свойств по сравнению с другими методами при сохранении надежности тестирования [23];

4) изучение радиационно-индуцированных дефектов в кремнии, образовавшихся в результате высокодозного облучения протонами. Исследован отжиг этих дефектов в ходе последующей температурной обработки [24];

5) показана возможность использования позитронной спектроскопии для определения надмолекулярной структуры жидких и твердых смесей. В частности, показано, что водные растворы спиртов в определенном интервале концентраций

компонентов представляют собой не истинные растворы, а наноэмульсионные смеси из несмешивающихся в воде «нанокапелек» спирта [25]. Отдельно стоит отметить выполненные работы по разработке прибора ПАЗЛ-3D [26] и методик исследования материалов на нем [26, 27]. Разработка нового прибора и методики исследования материалов на нем позволяет с высокой точностью исследовать наноразмерные особенности в широком спектре материалов.
 С.В. Рогожкин, А.А. Алеев, А.Г. Залужный, Н.А. Искандаров, А.А. Никитин, Р. Vladimirov, R. Lindau, А. Möslang. Томографическое атомно-зондовое исследование наномасштабных особенностей дисперсно-упрочненной стали ODS EUROFER в исходном состоянии и после облучения нейтронами. Физика металлов и металловедение, 2012, Т. 113, С. 104-112 Рогожкин С.В., Орлов Н.Н., Никитин А.А., Алеев А.А., Залужный А.Г., Козодаев М.А., R. Lindau, А. Möslang, P. Vladimirov, Исследование наноструктурного состояния 13.5% Сг ДУО стали при вариации содержания титана Перспективные материалы 2014
 № 12 с. 38-44. 3. С. В. Рогожкин, А. А. Богачев, Д. И. Кириллов, А. А. Никитин, Н. Н. Орлов, А.А Алеев, А. Г. Залужный, М. А. Козодаев. «Влияние легирования титаном на микроструктуру дисперсно¬упрочненной оксидами 13 5% хромистой стали». 2014 г. Физика металиов н.
 15.5% хромистой стали». 2014 Г. Физика металловедение, 2014, том 115, № 12, с. 1328-1335. 4. С. В. Рогожкин, А. А. Никитин, А. А. Алеев, А.Б. Германов, А. Г. Залужный, Атомно-зондовые исследования радиационно-индуцированных сегрегаций в ферритно-мартенситной стали Eurofer97, облученной в реакторе БОР-60. Перспективные
материалы, 2012, №5 с. 45-52. 5. С.В. Рогожкин, А.А. Никитин, А.А. Алеев, А.Г. Залужный, А.А Чернобаева, Д.Ю. Ерак, Я.И. Штромбах, О.О. Забусов. Исследование тонкой структуры материала сварного шва с высоким содержанием фосфора корпуса реактора ВВЭР-440 после облучения отжига и повторного облучения
 Ядерная физика и инжиниринг, 2013, Т. 4, С. 73-82. 6. А. Kryukov, Debarberis, A. Ballesteros, V. Krsjak, R. Burcl, S.V. Rogozhkin, A.A. Nikitin, A.A Aleev, A.G. Zaluzhnyi, V.I. Grafutin, O. Ilyukhina, Yu.V. Funtikov, A. Zeman. Integrated analysis of WWER-440 RPV weld re-embrittlement after annealing. Journal of Nuclear Materials, 2012, V. 429, P. 190-200.

7. Zeman, A. Chernobaeva, V. Grafutin, S. Rogozhkin, L.
Debarberis, A. Ballesteros, D. Erak, A. Nikitin.
Microstructure response of WWER-440 reactor pressure
vessel weld material after irradiation and annealing
treatment, ASTM Special Technical Publication. 2013,
1547 STP. Code 96218, P. 85-108.
8 РП Куйбила ББ Чалых ВБ Шишмарев НЮ
Гранев АЛ Фертман АА Алеев АА Никитин НН
Γ pures, Γ Λ , Γ
Орлов, С.В. Гогожкин, Т.В. Кулсвои. имитационный
эксперимент по излучению радиационной стоикости
реакторных материалов на инжекторе ускорителя
типр-т. Вопросы атомной науки и техники, серия
Ядерно-физические исследования, 2012, 1. 4, С.
188-190.
9. Г.Н. Кропачев, А.И. Семенников, Р.П. Куйбида, И.А.
Стоякин, Б.Б. Чалых, С.В. Плотников, С.В. Рогожкин,
А.А. Алеев, А.А. Никитин, Н.Н. Орлов, Д.Н. Селезнев,
Т.В. Кулевой. Исследование динамики пучка ионов
железа второй зарядности в канале вывода пучка
линейного ускорителя тяжелых ионов ТИПр-1 с
пространственно-однородной квадрупольной
фокусировкой. Ядерная физика и инжиниринг, 2012, Т.
3, C. 246-251.
10. Р.П. Куйбида, Т.В. Кулевой, Б.Б. Чалых, А.И.
Семенников, Г.Н. Кропачев,И.А Стоякин, А.О.
Черница, АЛ. Фертман, А.А. Алеев, А.А. Никитин, Н.Н.
Орлов С.В. Рогожкин Настройка канала вывола
ускорителя ТИПР-1 для имитационных экспериментов
по изучению ралиационной стойкости реакторных
материалов Вопросы атомной науки и техники серия
Ялерно-физические исследования 2012 Т.4 С 68-70
11 C B POΓΟΨΚΗΗ Δ Δ ΔΠΕΕΡ Δ Γ Запучный P Π
$K_{\rm M}$
Кунонда, Г. Б. Кулсвон, А. А. Пикитин, П. П. Орлов, Б. Б. Цаник, Р. Б. Шиникарар, Изаладородика, ранднид
D. Чалых, D. D. шишмарев. исследование влияния
тяжелойонного болучения на наноструктуру
перспективных материалов ядерных энергетических
установок. Ψ изика металлов и металловедение, 2012, 1.
113, U. 212-224.
12. С. В. Рогожкин, А. А. Алеев, А. Г. Залужный, Р. П.
Куйоида, Т. В. Кулевой, А. А. Никитин, Н. Н. Орлов, Б.
Б. Чалых, В. Б. Шишмарев. Томографическое
атомно-зондовое исследование эволюции
наноструктуры дисперсно-упрочненной оксидами
стали ODS Eurofer под воздействием тяжелоионного
облучения. Ядерная физика и инжиниринг, 2012, Т. 3,
373-379
13. Рогожкин С.В., Искандаров Н.А., Алеев А.А.,
Залужный А.Г., Куйбида Р.П., Кулевой Т.В., Чалых
Б.Б., Леонтьева-Смирнова М.В., Можанов Е.М.
Исследование влияния облучения ионами Fe на

наноструктуру ферритно-мартенситной стали ЭК-181, Перспективные материалы 2013 № 2 С 36-41
14 Рогожкин С.В. Кулевой Т.В. Искандаров Н.А. Ордов
$H H$ Uarting $\overline{\Sigma} \overline{\Sigma}$ Areep $\Delta \Delta$ [nauep H H) Kyŭdura
РП Никитин А А Фертман А Л Шишмарев В Б
Имитанионный эксперимент по изучению
рализиношной стойкости перспективной
феррицио-мартенситной стали упрошненной
лисперсиции включениями Атомиза энергия 2013 Т
114. С. 12-16.
15. С.В. Рогожкин, Н.Н. Орлов, А.А. Алеев, А.Г. Залужный,
М.А Козодаев, Р.П. Куйбида, Т.В. Кулевой, А.А.
Никитин, Б.Б. Чалых, R. Lindau, A. Möslang, P.
Vladimirov. «Перестройка наноструктуры стали ODS
Eurofer после облучения до дозы 32 сна». Физика
металлов и металловедение 2015, Т. 116, №1, С. 76-82.
16. Рогожкин С.В., Корчуганова О.А., Алеев А.А.,
Кинетика зарождения а фазы при термическом
старении сплава Fe-22%Cr, Перспективные материалы,
2015, № 12, C. 34-39.
1/. Рогожкин С.В., Корчуганова О.А., Алеев А.А.,
Кинетика роста и коагуляции а фазы при термическом
старении сплава $Fe-22\%$ Сг, перспективные материалы,
2010, Nº2, C. 17-22.
Boll T. Kulevov T. Microstructural evolution of Fe 22% Cr.
model allow under thermal againg and ion irradiation
conditions studied by atom probe tomography Journal of
Nuclear Materials 2016 V 477 P 172-177
19 S Rogozhkin A Bogachev O Korchuganova A Nikitin
N Orlov A Aleev A Zaluzhnyi MXozodaev T Kulevov
B Chalykh R Lindau A Möslang P Vladimirov M
Klimenkov M Heilmaier I Wagner S Seils
Nanostructure evolution in ODS steels under ion irradiation
Journal of Nuclear Materials and Energy 2016 V 9 P
66-74.
20. Леонов В. П., Счастливая И. А., Рогожкин С. В.,
Никитин А. А., Орлов Н. Н., Козодаев М. А., Васильев
А. А., Орехов А. С. Исследование наноструктуры
опытного титанового сплава композиции
Ti-5Al-4V-2Zr, Вопросы материаловедения, №3(87),
2016 c. 32-49.
21. Рогожкин С.В., Никитин А.А., Орлов Н.Н., Кулевой
Т.В., Федин П.А., Корчуганова О.А., Козодаев М.А.,
Васильев А.Л., Орехов А.С., Колобылина Н.Н., Леонов
В.П., Счастливая И.А., Микроструктура титанового
сплава Ti-5Al-4V-2Zr в исходном состоянии и после
облучения ионами титана. Перспективные материалы,
2016, №12, c. 5-15.
22. Sergey V. Stepanov, Vsevolod M. Byakov, Dmitrii S.

· · · · · · · · · · · · · · · · · · ·	
	 Zvezhinskiy, Gilles Duplatre, Roman R. Nurmukhametov and Petr S. Stepanov. "Positronium in a Liquid Phase: Formation, Bubble State and Chemical Reactions". Advances in Physical Chemistry, 2012, V. 2012, Article ID 431962, 17 pages. 23. V.M. Byakov, S.V. Stepanov, O.P. Stepanova "Mechanism of positronium formation. Positron Radiation Chemistry. Application for Revealing of Carcinogens and Fight Against Cancer". Biannual Journal of Japanese Society of Radiation Chemistry (Houshasen Kagaku), 2015, V. 100, pp. 46-48. 24. Yu.V. Funtikov, L.Yu. Dubov, Yu.V. Shtotsky, S.V. Stepanov "Radiation-Induced Defects in Si after High Energy Proton Irradiation", Defect and Diffusion Forum, 2017, V.373, pp.209-212. 25. P.S. Stepanov, V.M. Byakov, A.G. Zaluzhnyi "Application of positron spectroscopy for the detection of nanostructures in water-alcohol mixtures", Acta Physica Polonica A. 2014, V. 125(3), pp. 767-769. 26. Рогожкин С.В., Алеев А.А., Лукьянчук А.А., Шутов A.C., Разницын О.А., Кириллов С.Е. Прототип атомного зонда с лазерным испарением // Приборы и техника эксперимента. 2017. № 3. С. 129-134 [S. V. Rogozhkin, A. A. Aleev, A. A. Lukyanchuk, A. S. Shutov, O. A. Raznitsyn, and S. E. Kirillov An Atom Probe Prototype with Laser Evaporation // Instruments and Experimental Techniques, Vol. 60. N 3. P. 428-433] 27. Paзницын О.А., Лукьянчук А. А., Шутов A.C., Paranuugu C. B. Arcee A. A. Октичнования A. C., Paranuugu C. B. Arcee A. A. Октичнования A. C.,<
	 О. А. Казпізуп, and S. Е. Кігіноv An Atom Probe Prototype with Laser Evaporation // Instruments and Experimental Techniques, Vol. 60. N 3. P. 428-433] 27. Разницын О.А., Лукьянчук А. А., Шутов А.С., Рогожкин С. В., Алеев А. А. Оптимизация параметров анализа материалов методами атомно-зондовой томографии с лазерным испарением атомов // Масс-спектрометрия. 2017. Т. 14, № 1. С. 33-39

3. Критерии определения статуса УНУ (приводятся данные за 2016 год)

No	Наименование показателя	Информация
П/П		
N⁰	Наименование показателя	Значение
п/п		
1	Удельный вес сотрудников	30
	УНУ, имеющих ученую	
	степень, %	
2	Удельный вес времени	60
	работы УНУ в интересах	
	внешних пользователей в	
	общем объеме фонда	
	рабочего времени УНУ, %	
3	Количество	10
	организаций-пользователей	
	за год и/или	

	организаций-участников	
	проводимых совместных	
	экспериментов, ед.	
4	Публикационная активность	8
	(статьи, подготовленные по	
	результатам исследований,	
	проведенных с	
	использованием УНУ в	
	научных журналах,	
	индексируемых в базах	
	данных Web of Science или	
	Scopus), публ. в год (2016 г)	